APupuk organik. Pupuk organik adalah pupuk yang tersusun dari materi makhluk hidup, seperti pelapukan sisa -sisa tanaman, hewan, dan manusia Pupuk organik dapat berbentuk padat atau cair yang digunakan untuk memperbaiki sifat fisik, kimia, dan biologi tanah. Pupuk organik mengandung banyak bahan organik daripada kadar haranya.
Bahan organik tanah From Wikipedia, the free encyclopedia Bahan organik tanah InggrisSoil Organic Matter merupakan bahan di dalam atau permukaan tanah yang berasal dari sisa tumbuhan, hewan, dan manusia baik yang telah mengalami dekomposisi lanjut maupun yang sedang megalami proses dekomposisi.[1] secara substansi bahan organik tersusun dari bahan humus dan non humus Bohn et al., 1979.[1] bahan organik tanah
banyakmengandung bahan organik. Pakan utama cacing tanah adalah bahan organik yang dapat berasal dari serasah daun (daun yang gugur), kotoran ternak atau bagian tanaman dan hewan yang sud ah mati (Suin, 1997). Saat ini limbah peternakan, limbah pertanian, limbah rumah tangga dan industri terdapat dalam jumlah yang sangat melimpah .
Bahan organik tanah adalah bahan yang ada di dalam atau di permukaan tanah yang berasal dari sisa tumbuhan,hewan, dan manusia yang telah mengalami dekomposisi sebagian atau seluruhnya. Bahan organik biasanya berwarna coklat dengan sifat koloid yang dikenal dengan humus. Humus terdiri dari bahan organik halus yang berasal dari hancuran bahan organik kasar dan senyawa - senyawa baru yang terbentuk dari peristiwa tersebut melalui aktivitas mikroorganisme dalam tanah. Humus terdiri dari asam humat, asam fulvik dan humin. Siradz, 2003 . Bahan organik tanah terdiri dari bahan yang berasal dari jaringan tanaman dan hewan, baik yang masih hidup maupun yang sudah mati, pada berbagai tatanan dekomposisi. Pada bahan organik terdapat bahan yang telah mengalami dekomposisi baik sebagian atau seluruhnya, yang telah mengalami humifikasi maupun belum Fontaine, 2004 Faktor - faktor yang mempengaruhi besarnya bahan organik tanah antara lain Iklim. Iklim berpengaruh pada kelajuan dekomposisi tanah Tipe penggunaan lahan. Tipe penggunaan lahan mempengaruhi ketersediaan sumber bahan organik, sehingga tiap lahan akan mempunyai kandungan bahan organik yang berbeda-beda. Relief dan bentuk lahan. Relief dan bentuk lahan mempengaruhi proses akumulasi dan pencucian bahan organik pada tanah. Kegiatan manusia. Kegiatan manusia seperti penambahan pupuk dan bahan ameliorasi mempengaruhi kandungan bahan organik tanah. Apabila kandungan bahan organik tanah diketahui, maka jenis tanaman yang akan ditanam dapat disesuaikan dan diketahui kondisi kesuburan suatu tanah. Siradz, 2003 . Kandungan bahan organik tanah berkisar antara 0,5 - 5% pada tanah mineral dan mencapai 98% pada tanah gambut/organik. Untuk menetapkan kualitas bahan organik maka salah satunya digunakan parameter nisbah C/N. Kandungan bahan organik dalam tanah dapat diukur berdasarkan kandungan C -Organik. Kandungan C-Organik antara 45-60%, dan konversi C-Organik menjadi bahan organik adalah %C-Organik x 1,724. Tanah pertanian biasanya mengandung C/N antara 8-10 Foth et al, 1972. PENETAPAN KADAR BAHAN ORGANIK TANAH Metode yang digunakan dalam penetapan bahan organik tanah adalah dengan metode Walkley and Black. Tahapan yang dilakukan dalam metode ini adalah tahapan antara yaitu kandungan bahan organik ditentukan oleh C-organik hasil titrasi kemudian dikalikan dengan konstanta tertentu. Hal yang perlu disiapkan pertama kali adalah alat dan bahan kimia. Alat 1. Timbangan analitis 4 angka dibelakang koma 2. Labu takar 50ml 3. Pipet tetes 4. Pipet ukur 10 ml dan 5 ml 5. Pipet volum 5ml 6. Erlenmeyer 100 ml 7. Buret 25 ml dan statis 8. Gelas ukur 25ml 9. Botol semprot 10. Gelas piala 50 ml Bahan 1. Contoh tanah kering angin diameter mm 2. Aquadest 3. Diphenyl amine gram diphenyl amine + 20 ml aquadest + 100 ml H2SO4 pekat 4. K2Cr2O7 1N 5. H2SO4 pekat 96% 6. H3PO4 85% 7. FeSO4 1 N Cara Kerja 1. Timbang contoh tanah 0,1- 0,5 gram tergantung jenis tanah/sampel 2. Masukkan contoh tanah ke dalam labu takar, tambahkan 10 ml K2Cr2O7 1N dan 10 ml H2SO4 pekat dengan menggunakan pipet ukur 10 ml. 3. Dikocok dengan gerakan mendatar dan memutar. Warna harus tetap merah jingga orange, jika warna berubah biru atau hijau maka ulangi penimbangan sampel langkah 1. Penimbangan sampel dikecilkan dari sebelumnya. Misal penimbangan awal 0,5gram menjadi 0,3gram. 4. Larutan tanah didiamkan kurang lebih 30 menit sampai larutan dingin. 5. Setelah dingin tambahkan 5 ml H3PO4 85% dan tambahkan 1ml diphenylamine dengan menggunakan pipet ukur. 6. Kemudian tambahkan aquadest sampai tanda batas 50 ml . 7. Larutan tanah dikocok dengan cara membolak-balik sampai homogen dan biarkan mengendap. 8. Ambil 5 ml larutan yang jernih dengan menggunakan pipet volum, masukkan ke dalam erlenmeyer dan tambahkan 15 ml aquadest. 9. Kemudian dititrasi dengan FeSO4 1N hingga warna berubah menjadi kehijauan, dan catat volume titrasinya. 10. Langkah 1 – 9 diulangi tanpa contoh tanah untuk blanko. Fungsi blanko untuk koreksi alat maupun bahan/reagensia murni tidaknya dan untuk mempermudah hitungan . Perhitungan C-Organik = B – A x N FeSO4 x 3 x10 x100/77x100% / x berat tanah mg Bahan Organik = C-Org x 100/58 Keterangan B = Hasil titrasi blanko A = Hasil titrasi sampel Fak Koreksi = 100/100+KL KL = kadar lengas diameter 0,5mm Kriteria Nilai C-Organik Tanah 5 Sangat Tinggi Sumber Balai Penelitian Tanah, 2009 Daftar Pustaka Balai Penelitian Tanah. 2009. Petunjuk Teknis Analisa Kimia Tanah, Tanaman, Air, dan Pupuk. Balai Penelitian Tanah. Bogor. Hal 211. Fontaine, S., L. Abbadie, and Mariotti. 2004. Carbon input to soil may decrease carbon content. Ecology Letters, 7 314-320. Foth, N. D., and L. M. Turk. 1972. Fundamentals of Soil Science 5thedition. Jhon Willeyand Sons, Inc, New York. Siradz, 2003. Genesis, Morfologi dan Klasifikasi Tanah. Jurusan Tanah Fakultas Pertanian UGM, Yogyakarta.
SumberBahan Organik Tanah. Bahan organik tanah dapat berasal dari: (1) sumber primer, yaitu: jaringan organik tanaman (flora) yang dapat berupa: (a) daun, (b) ranting dan cabang, (c) batang, (d) buah, dan (e) akar;. Jaringan tanaman ini akan mengalami dekomposisi dan akan terangkut ke lapisan bawah tanah. Tumbuhan tidak saja sebagai sumber
Indonesia dikenal dengan tanahnya yang subur dan hasil bumi yang melimpah. Orang berlomba mengolah tanah menjadi lahan produktif melalui lahan pertanian, tambang maupun perumahan. Kini kesuburan tanah kian menurun akibat pengolahan tanah yang tidak bertanggungjawab ini, pencemaran dari berbagai limbah dan penggunaan pupuk chemical yang berlebihan. Langkah awal yang dapat kita lakukan saat ini adalah memahami kondisi tanah untuk dapat menentukan pengolahan tanah yang tepat. Dengan memahami kondisi kesuburan tanah maka kita dapat menentukan pengolahan lahan yang tepat. Tanah dapat dikatakan subur apabila tanah memiliki kandungan unsur hara yang cukup untuk mendukung pertumbuhan tanaman. Kandungan unsur hara yang cukup dalam tanah akan membantu pertumbuhan tanaman sehingga tanaman mampu menghasilkan produk dengan kualitas dan kuantitas baik. Berikut indikator kesuburan tanah dari karakteristik sifat fisik, kimia, dan biologi tanahnya. Secara fisik, 50% dari tanah tersusun atas mineral dan bahan organik, sedangkan 50% sisanya terdiri atas ruang pori yang terisi air dan udara. Tanah yang subur pada umumnya memiliki tekstur pasir, lempung dan debu yang seimbang. Pasir akan mengalirkan udara masuk ke dalam tanah sehingga dapat membantu akar tanaman untuk bernafas. Persentase pasir di dalam tanah perlu diimbangi dengan lempung yang dapat mengikat air untuk diserap tanaman dan debu yang merupakan serpihan bahan organik yang secara tidak langsung mampu memperkaya unsur hara untuk kepentingan tumbuh kembang tanaman. Indikator penting lainnya dalam menentukan kesuburan tanah adalah sifat kimia yang terdiri atas derajat kemasaman tanah pH, kandungan unsur hara dan kandungan bahan organik BO. Tingkat keasaman pH sangat berpengaruh terhadap kandungan unsur hara dan aktivitas mikroorganisme di dalam tanah. Tanah yang dikatakan subur adalah tanah yang memiliki pH sekitar 6 – 7,5 atau pada pH netral, karena pada pH tersebut kebanyakan unsur hara mudah larut dalam air dan mikroorganisme dapat berkembang dengan baik. Selain derajat keasaman, kandungan bahan organik dalam tanah memiliki peran untuk meningkatkan ketersediaan unsur hara dan meningkatkan kesuburan tanah. Dengan kata lain penyerapan unsur hara lebih maksimal karena bahan organik dapat meningkatkan muatan negatif sehingga akan meningkatkan kapasitas tukar kationunsur haranya akan menjadi optimal. Dilihat dari sifat biologinya, dalam tanah subur yang terdapat adanya aktivitas mikroorganisme. Mikroorganisme sangat berperan penting dalam pembentukan kesuburan tanah, mikroorganisme akan membantu proses perombakan atau dekomposisi bahan organik menjadi humus yang baik untuk tumbuh kembang tanaman. Selain itu, banyaknya aktivitas mikroorganisme mampu menghasilkan CO2 dan membantu aerasi tanah sehingga dapat membantu proses fotosintesis dari tanaman yang tumbuh di atasnya. Maka dari itu, tanah dapat dikatakan subur apabila didalamnya terdapat mikroorganisme baik yang membantu menyuburkan tanah. Komponen-komponen kesuburan tanah di atas dapat menjadi acuan bagi yang ingin mengolah tanah agar memperhatikan kondisi tanah terlebih dahulu sebelum aktifitas penanaman dilakukan. Hal ini untuk memastikan bahwa tanaman yang ditanam dapat tumbuh dan berkembang dengan maksimal karena tercukupinya unsur-unsur baik di dalam tanah.
Berikutadalah tahapan budidaya ikan gabus di kolam tanah secara tepat: 1. Syarat Lokasi Budidaya Ikan Gabus. Hal pertama yang harus diperhatikan saat akan membuat kolam terpal adalah pemilihan lokasi yang strategis sehingga Anda bisa rutin melakukan pengecekan kondisi dari kolam terpal ikan gabus tersebut.
memanfaatkan abu vulkanik sebagai pupuk alami, pembenah tanah, dan penangkap karbon jauh lebih murah dibanding usulan lain ...Jakarta ANTARA - Sektor pertanian Indonesia diperkirakan berkontribusi melepas karbon sebagai gas rumah kaca sebanyak 13 persen dari total emisi gas rumah kaca penyebab perubahan iklim. Pemerintah melalui Kementerian Perencanaan Pembangunan Nasional Bappenas kemudian berkomitmen mengurangi emisi dari sektor lahan, termasuk pertanian, sebesar 58,3 persen pada 2024. Pemerintah juga mendorong sistem pertanian rendah emisi karbon. Di sisi lain, bidang pertanian menjadi sektor paling rentan terdampak perubahan iklim sehingga ketahanan pangan Indonesia juga terancam. ​Indonesia dituntut mempertahankan produksi pertanian sekaligus menekan emisi gas karbon. Berbagai strategi jitu, seperti promosi pertanian organik melalui subsidi pupuk organik dan bantuan pupuk organik, mulai diupayakan Pemerintah. Tujuannya agar karbon dapat disimpan ke dalam tanah sekaligus memulihkan tanah untuk menopang produksi pertanian. Prinsipnya, pupuk organik harus dikombinasikan dengan pupuk anorganik agar produksi pertanian tidak melandai. Tentu upaya itu layak didukung, diteruskan, dan digaungkan. Namun, artikel ini membahas upaya lain yang jarang dilirik berbagai pihak, yaitu memanfaatkan abu vulkanik asal semburan gunung berapi. Abu vulkanik dapat menjadi solusi mempertahankan ketahanan pangan yang berbasis alam. Di negara-negara dengan gunung berapi aktif, seperti Indonesia, abu vulkanik dapat digunakan untuk memasok nutrisi sekaligus mengurangi CO2 dari atmosfer. Sejujurnya sejak lama pengetahuan abu vulkanik dapat menyuburkan tanah sudah banyak diketahui peneliti, akademisi, bahkan oleh petani klasik. Namun, manfaat abu vulkanik sebagai pembenah tanah atau pupuk masih terbatas dinikmati oleh para petani di wilayah sekitar gunung berapi di Jawa. Bahkan masih banyak petani yang menikmati kesuburan tanah dari abu vulkanik tanpa sadar bahwa sumber pupuk gratis itu berasal dari semburan gunung berapi. Sewaktu Gunung Sinabung meletus di Sumatera Utara, para petani mengeluh karena abu gunung berapi merusak tanaman dan mengganggu pertanian. Abu-abu di jalanan dicuci karena mengganggu lalu lintas. Belum ada upaya sistematis memperluas skala memanfaatkan abu vulkanik untuk memperbaiki tanah-tanah miskin hara. Indonesia memiliki setengah dari jumlah letusan gunung berapi mematikan di dunia. Setiap bulan terjadi letusan gunung berapi yang lebih kecil. Karena letusan yang berulang, tanah di daerah gunung berapi biasanya memiliki lapisan abu yang berlapis-lapis. Tanah seperti ini dapat ditemukan di dekat 127 gunung berapi aktif dan tidak aktif yang tersebar di pulau-pulau Sumatra, Jawa, Bali, Kepulauan Nusa Tenggara, bagian utara Sulawesi, dan Maluku. Abu sering dianggap sebagai gangguan, tidak banyak digunakan sebagai perbaikan tanah di lahan pertanian, dan belum diteliti dengan memadai sebagai alternatif untuk batu basalt yang dihancurkan. Di kalangan ilmuwan ilmu tanah, abu vulkanik telah menjadi objek kajian yang menarik sejak dulu kala. Musababnya, selama proses pelapukan abu vulkanik menjadi tanah juga terjadi penyerapan CO2 dari atmosfer yang melimpah. Ketika disemburkan dari mulut gunung berapi, kandungan karbon organik dari abu vulkanik adalah nol alias nol persen. Namun, ketika berubah menjadi tanah, maka tanah vulkanik dapat memiliki kandungan C-organik sebesar 10 persen. Tanah yang berasal dari abu vulkanik itu disebut andisol atau andosol. Kata ando berasal dari bahasa Jepang yang bermakna hitam. Tanah yang berasal dari abu vulkanik umumnya berwarna hitam yang menjadi penanda kaya bahan organik. Bandingkan dengan rata-rata kandungan karbon organik pada tanah mineral yang hanya 1 sampai 2 persen. Warna tanah andosol selain hitam juga merah atau merah kekuningan sebagai penanda tingginya kandungan besi. Selain andosol, tidak ada tanah mineral yang kandungan bahan organiknya di atas 10 persen. Tanah dengan kandungan bahan organik di atas 10 persen biasanya adalah tanah organik yang juga disebut gambut. Luasan andisol hanya 1 persen dari luas permukaan bumi, tetapi andisol mengandung sekitar 5 persen dari stok karbon tanah global Dahlgren et al., 2004. Abu Vulkanik Sejumlah peneliti seperti Prof. Dian Fiantis dari Jurusan Tanah, Fakultas Pertanian, Universitas Andalas, mengungkap lapisan tanah permukaan tanah vulkanik di Sumatera Barat mengandung karbon organik rata-rata 4 persen dan dalam beberapa kasus mencapai 15 persen. Pada tahun 1930-an Mohr, ahli tanah dari Belanda, bahkan mengasosiasikan kepadatan penduduk di tanah Jawa berhubungan erat dengan sebaran tanah andisol. Menurutnya, wilayah terpadat di Pulau Jawa terpusat di area-area tanah subur yang berkembang dari bahan induk abu vulkanik. Di Indonesia, tanah asal abu vulkanik luasannya menapai 31,7-juta hektar atau 17 persen luas daratannya. Letusan gunung berapi menyediakan abu vulkanik dan tefra. Namun, tefra tidak banyak digunakan dan belum diinvestigasi dengan memadai sebagai pembenah tanah untuk mengikat karbon. Hitungan penulis yang diterbitkan di Jurnal Soil Security berjudul Applying Volcanic Ash to Croplands–The Untapped Natural Solution mencatat besaran dan peluang potensi pengurangan CO2 dari bahan vulkanik yang diproduksi setiap tahun di Indonesia. Pada tahun-tahun dengan letusan gunung berapi yang signifikan, pengurangan berikutnya akan mencapai 100-200 juta ton CO2 atau 20-40 persen emisi bahan bakar fosil negara tersebut. CO2 yang ditangkap ketika bahan vulkanik melapuk merupakan bagian dari siklus karbon global yang jumlahnya tergantung penggunaan lahan. Ketika abu vulkanik melapuk, pelapukan kimiawi senyawa yang mengandung kalsium dan magnesium menambat CO2 dari atmosfer. Kation dasar yang melapuk dan bikarbonat yang mengendap dalam tanah disimpan sebagai karbon anorganik atau terlarut. Demikian pula iklim dan vegetasi memengaruhi laju pelapukan termasuk kondisi larutan tanah, pH, dan kondisi redoks. Yang luar biasa, abu vulkanik yang tidak mengandung karbon organik itu secara cepat mampu mengakumulasi karbon. Musababnya, abu yang telah melapuk merupakan mineral amorf dengan luas permukaan yang besar sehingga memungkinkan memerangkap karbon asal vegetasi yang tumbuh maupun mikroba yang hidup. Setelah ditangkap, karbon organik bertahan lama dalam tanah karena dilindungi dari aktivitas mikroba oleh kompleks organometalik. Kompleks tersebut membentuk penghalang fisik dan kimia yang mencegahnya dilepaskan kembali ke atmosfer. Satu eksperimen menunjukkan bahwa abu vulkanik yang baru terendap dapat mengakumulasi karbon organik tanah dengan kecepatan 1,8-2,5 ton CO2 per hektare per tahun melalui pembentukan lumut dan tumbuhan vaskular. Laju ini jauh lebih tinggi daripada sistem manajemen karbon tanah mana pun. Keistimewaan abu vulkanik itu sering terabaikan karena saat ini abu vulkanik sering tererosi sehingga cepat terbawa air hujan lalu masuk ke sistem akuatik seperti sungai, danau, dan samudera. Pada konteks ini, peluang abu vulkanik sebagai bahan pembenah tanah, pemberi nutrisi tanah, serta penangkap karbon tanah hilang karena langsung berpindah ke sungai dan laut yang menyebabkan masalah di perairan yang menjadi beban bagi lingkungan. Di perairan, abu vulkanik tidak dapat melapuk dan menangkap karbon secara efektif. Dengan teknik pengelolaan yang tepat pada lansekap tertentu, memanfaatkan abu vulkanik sebagai pupuk alami, pembenah tanah, dan penangkap karbon jauh lebih murah dibanding usulan lain seperti menambang dan menggiling batuan basal dari luar untuk pupuk dan pembenah tanah. Abu vulkanik tidak perlu digiling, tetapi dapat menyerap jumlah karbon yang signifikan dari atmosfer, serta memasok nutrisi yang berlimpah bagi kesuburan tanah untuk mewujudkan ketahanan tanah soil security dan ketahanan pangan food security. Dengan demikian, abu vulkanik dapat dimasukkan dalam akuntansi karbon dan pengelolaannya dapat menjadi bagian dari strategi pengurangan emisi. Terakhir, jika abu vulkanik tidak digunakan untuk sektor pertanian, maka abu tersebut dapat terbawa oleh sungai atau samudera. Kemampuan mereka menangkap CO2 masih dapat terjadi di perairan dengan tingkat yang lebih rendah, tetapi menjadi tidak menguntungkan untuk memperbaiki kualitas tanah, mendukung ketahanan pangan, serta tidak berkontribusi menjadi bagian sektor pertanian rendah karbon. * Prof. Budiman Minasny, SP, Profesor Ilmu Tanah dan Lingkungan di University of Sydney, Australia dan Dr. Destika Cahyana, SP, Peneliti di Pusat Riset Tanaman Pangan, Badan Riset, dan Inovasi Pertanian. Editor Achmad Zaenal M COPYRIGHT © ANTARA 2023
campurantailing, tanah, dan bahan organik (Tabel 1). Tabel 1. Tinggi sengon pada campuran tailing, tanah, dan bahan organik pada umur 28, 42, 56, 70, dan 84 hari setelah tanam Perlakuan (cmTinggi ) bibit ) 28 HST 42 HST 56 HST 70 HST 84 HST Tailing + tanah 4,50 a 6,88 a 9,08 a 12,71 a 14,81 a
. 272 345 90 385 313 318 467 86
kandungan bahan organik yang melimpah pada tanah ditandai dengan